TEOREMA DE PITÁGORAS |
En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de loscuadrados de los catetos.
a2 + b2 = c2
| ||
Cada uno de los sumandos, representa el área de un cuadrado de lado, a, b, c. Con lo que la expresión anterior, en términos de áreas se expresa en la forma siguiente:
| ||
El área del cuadrado construido sobre la hipotenusa de un triángulo rectángulo, es igual a la suma de las áreas de los cuadrados construidos sobre los catetos.
|
Si en vez de construir un cuadrado, sobre cada uno de los lados de un triángulo rectángulo, construimos otra figura, ¿seguirá siendo cierto, que el área de la figura construida sobre la hipotenusa es igual a la suma de las áreas de las figuras semejantes construidas sobre los catetos?
(Pinchando en los dibujos siguientes se accede a la comprobación numérica en las figuras que se representan)
DEMOSTRACIONES DEL TEOREMA DE PITÁGORAS
A lo largo de la historia han sido muchas las demostraciones y pruebas que matemáticos y amantes de las matemáticas han dado sobre este teorema. Se reproducen a continuación algunas de las más conocidas.
DEMOSTRACIONES GEOMÉTRICAS
PITÁGORAS.
Una de las demostraciones geométricas mas conocidas, es la que se muestra a continuación, que suele atribuirse al propio Pitágoras.
A partir de la igualdad de los triángulos rectángulos es evidente la igualdad
a2 + b2 = c2
|
La relación que expresa el teorema de Pitágoras es especialmente intuitiva si se aplica a un triángulo rectángulo e isósceles. Este problema lo trata Platón en sus famosos diálogos.
|
La relación entre los catetos y la hipotenusa de un triángulo rectángulo, aparece ya en los Elementos de Euclides.
Elementos de Euclides. Proposición I.47.
En los triángulos rectángulos el cuadrado del lado que subtiende el ángulo recto es igual a los cuadrados de los lados que comprenden el ángulo recto.
Para demostrarlo, Euclides construye la figura que se representa a la derecha.
La prueba que da Euclides consiste en demostrar la igualdad de las áreas representadas en el mismo color.
|
¡ Mira !
|
A continuación se presentan algunas demostraciones visuales del teorema de Pitágoras en forma de puzzles. En todos ellos, las piezas en que se se han dividido los cuadrados construidos sobre los catetos, completan el cuadrado construido sobre la hipotenusa.
1.- Los siguientes disecciones son válidas para cualquier triángulo rectángulo.Se han ordenado de menos a mayor número de piezas que lo forman.
1. Ozanam | 2.- Perigal | 3.- |
4. Anaricio | 5. Bhâskara | 6.- |
7.- | 8.- | |
![]() | ![]() |
Triangulo Rectángulo Isósceles
| ||
![]() | ||
Triangulo rectángulo 3,4,5 | Cateto mayor / cateto menor = 2 | |
![]() | ||
Hipotenusa /cateto menor =3
| Hipotenusa/cateto menor = 2 | |
![]() | ![]() |
3.- Finalmente, dos puzzles especialmente interesantes. No solo prueban el teorema de Pitágoras, también el del cateto.
Son validos para triángulos rectángulos con los ángulos (excluido el recto) en el intervalo que se indica en cada caso.
Para ampliar el intervalo de validez, hay que aumentar el número de piezas, y no puede generalizarse con un número finito.
Ángulos A y B mayor o igual que 30 y menor o igual que 60.
30 ≤ A ≤ 60;
|
No hay comentarios:
Publicar un comentario